Selection Equilibria of Higher-Order Games
نویسندگان
چکیده
In applied game theory the modelling of each player’s intentions and motivations is a key aspect. In classical game theory these are encoded in the payoff functions. In previous work [2,4] a novel way of modelling games was introduced where players and their goals are more naturally described by a special class of higher-order functions called quantifiers. We refer to these as higher-order games. Such games can be directly and naturally implemented in strongly typed functional programming languages such as Haskell [3]. In this paper we introduce a new solution concept for such higher-order games, which we call selection equilibrium. The original notion proposed in [4] is now called quantifier equilibrium. We show that for a special class of games these two notions coincide, but that in general, the notion of selection equilibrium seems to be the right notion to consider, as illustrated through variants of coordination games where agents are modelled via fixed-point operators. This paper is accompanied by a Haskell implementation of all the definitions and examples.
منابع مشابه
Existence of equilibria in countable games: an algebraic approach
Although mixed extensions of finite games always admit equilibria, this is not the case for countable games, the best-known example being Wald’s pick-the-larger-integer game. Several authors have provided conditions for the existence of equilibria in infinite games. These conditions are typically of topological nature and are rarely applicable to countable games. Here we establish an existence ...
متن کاملSelection-Mutation Dynamics of Signaling Games
We study the structure of the rest points of signaling games and their dynamic behavior under selection-mutation dynamics by taking the case of three signals as our canonical example. Many rest points of the replicator dynamics of signaling games are not isolated and, therefore, not robust under perturbations. However, some of them attract open sets of initial conditions. We prove the existence...
متن کاملA generalisation of Nash's theorem with higher-order functionals
The recent theory of sequential games and selection functions by Martin Escardó and Paulo Oliva is extended to games in which players move simultaneously. The Nash existence theorem for mixed-strategy equilibria of finite games is generalised to games defined by selection functions. A normal form construction is given which generalises the game-theoretic normal form, and its soundness is proven...
متن کاملA generalization of Nash's theorem with higher-order functionals
The recent theory of sequential games and selection functions by Escardó & Oliva is extended to games in which players move simultaneously. The Nash existence theorem for mixed-strategy equilibria of finite games is generalized to games defined by selection functions. A normal form construction is given, which generalizes the game-theoretic normal form, and its soundness is proved. Minimax stra...
متن کاملCascading to Equilibrium: Hydraulic Computation of Equilibria in Resource Selection Games
Drawing intuition from a (physical) hydraulic system, we present a novel framework, constructively showing the existence of a strong Nash equilibrium in resource selection games (i.e., asymmetric singleton congestion games) with nonatomic players, the coincidence of strong equilibria and Nash equilibria in such games, and the uniqueness of the cost of each given resource across all Nash equilib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017